The Measurement of Statistical Evidence Lecture 2 - part 2

Michael Evans
University of Toronto
http://www.utstat.utoronto.ca/mikevans/sta4522/STA4522.html

2021

What is randomness?

- recommended Sugita, H. (2018) Probability and Random Number, World Scientific, Chapter 2 a reasonably accessible treatment
- this issue was resolved in the 1960's by Chaitin, Kolmogorov and Solomonoff
- so what role does randomness have in probability and statistics?
- the concept of randomness is intimately connected with rigorizing what it means for a function f to be "computable" by a computer
- f is computable if there is a program to evaluate it and, since all inputs and outputs correspond to a finite binary sequences, we can restrict attention to the set \mathcal{F} of all functions $f: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$
- \mathcal{F} is uncountable (if countable, then can write $\left\{f_{1}, f_{2}, \ldots\right\}$ and define f by $f(i)=0$ if $f_{i}(i) \neq 0$ and $f(i)=1$ if $\left.f_{i}(i)=0\right)$ so $f \in \mathcal{F}$ but $f \neq f_{i}$ for any i)
- since every program (algorithm) corresponds to a finite binary sequence, and the set of all finite binary sequences is countable, this implies that the set \mathcal{F} of all computable functions (also called recursive functions) is
countable

Kolmogorov Complexity (a sketch)

- put $\{0,1\}^{*}=$ set of all finite sequences of 0 's and 1 's obtained from elements of \mathbb{N}_{0} by binary expansion with highest order bit equal to 1 , let the empty sequence correspond to $0 \in \mathbb{N}_{0}$, and consider \mathbb{N}_{0} and $\{0,1\}^{*}$ as identified
- so $0 \equiv(), 1=1 \cdot 2^{0} \equiv(1), 2=0 \cdot 2^{0}+1 \cdot 2^{1} \equiv(0,1), 3=$ $1 \cdot 2^{0}+1 \cdot 2^{1} \equiv(1,1), 4=0 \cdot 2^{0}+0 \cdot 2^{1}+1 \cdot 2^{2} \equiv(0,0,1)$, etc.
- note - a recursive function (see reference for precise definition) on \mathbb{N}_{0} is a function that can be constructed from some basic functions and an operation called minimization and a partial function (as opposed to a total function) f on \mathbb{N}_{0} means that it may only defined for some elements of \mathbb{N}_{0}
- let $I(x)=$ length of $x \in\{0,1\}^{*}$ (or $x \in \mathbb{N}_{0}$) and note for $x \in \mathbb{N}_{0}$, then $I(x) \leq \log _{2} x+1$ since $x=2^{\log _{2} x}$

Definition If $A:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a partial recursive function, when considered as a function $\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$, then it is called an algorithm. The computational complexity under algorithm A of $x \in\{0,1\}^{*}$ is defined by

$$
K_{A}(x)=\min \left\{I(q): q \in\{0,1\}^{*}, A(q)=x\right\}
$$

when $\left\{q \in\{0,1\}^{*}, A(q)=x\right\} \neq \phi$ and $K_{A}(x)=\infty$ otherwise.
Theorem There exists algorithm A_{0} such that for any algorithm A there is a constant $c_{A_{0}, A}$ s.t. $K_{A_{0}}(x) \leq K_{A}(x)+c_{A_{0}, A}$.

- such an A_{0} is called a universal algorithm (not unique but the Theorem also applies to two universal algorithms and their absolute difference is bounded by a constant)
- so when $K_{A_{0}}(x)$ is big, say much bigger than $c_{A_{0}, A}$ and bigger than $K_{A}(x)$, then $\left(K_{A_{0}}(x)-K_{A}(x)\right) / K_{A_{0}}(x)$ is small
- for fixed $A_{0}, K(x)=K_{A_{0}}(x)$ is called the Kolmogorov complexity of x
- if a different universal algorithm is used, the absolute difference in the Kolmogorov complexities is bounded by a fixed constant

Theorem

(i) There exists constant $c>0$ s.t. $K(x) \leq n+c$ for every $x \in\left(\{0,1\}^{n}\right)^{*}$ and $n \in \mathbb{N}_{0}$. So $K:\{0,1\}^{*} \rightarrow \mathbb{N}_{0}$ is a total function.
(ii) If $n>c^{\prime}>0$ then

$$
\#\left\{x \in\left(\{0,1\}^{n}\right)^{*}: K(x)>n-c^{\prime}\right\}>2^{n}\left(1-2^{-c^{\prime}}\right)
$$

- $x \in\left(\{0,1\}^{n}\right)^{*}$ is called random if $K(x) \approx n$
- this "complexity" measure of x is a measure of the randomness of the sequence, e.g. $(0,1,0,1,0,1, \ldots, 0,1)$ is not random
- for large n, Theorem (ii) implies most elements of $\left(\{0,1\}^{n}\right)^{*}$ are random

Example a computer program has computed 31.4 trillion decimal digits of π, or approximately $\log _{2}\left(10^{31.4 \times 10^{12}}\right)=1.04 \times 10^{14}$ bits, and the program for this is considerably shorter so this approximation to π is not random

- so far, although most elements of $\{0,1\}^{*}$ are random there is no known example of such a sequence

Theorem K is not a computable function (there is no program to compute it guaranteed to work).

- what this means is that there is no computable test for randomness
- implications for statistics: there is no test for randomness
- so what do current tests for randomness test? independent and identically distributed
Example Champernowne's sequence
- consider the following sequence
$\left(x_{1}, \ldots, x_{n}\right)=(0,1,2,3,4,5,6,7,8,9,1,0,1,1,1,2,1,3,1,4, \ldots, \cdot)$ and subject this sequence to a rest that the sequence is i.i.d. from a uniform distribution on $\{0,1,2,3,4,5,6,7,8,9\}$
- if n is large enough the sequence will pass the test but it is not random
- recall, we stated earlier that the correct way to collect data was through randomization and, in particular, that this made the relative frequency distribution f_{X} suitable for assigning beliefs concerning the values taken by measurement X, namely, our belief that $X(\omega) \in A \subset \mathcal{X}$ is measured by

$$
P(A)=\sum_{x \in A} f_{X}(x)
$$

- why?
- my answer

Physical randomization corresponds to collecting the data in such a way that interested parties have absolutely no influence over the outcomes and, because of this, we can assert that the data is objective.

- there are physical systems, like coin tossing, drawing chips from a bowl, that we believe, when performed appropriately, cannot be controlled or manipulated and so we accept these as random systems and use them to randomize
- so randomness has nothing to do with probability, which measures belief, but it plays a key role in ensuring that the data is objective

Cox's Theorem

- R. Cox (1946) attempted to characterize probability via a set of simple axioms in the sense that, if we accept the axioms, then the correct way to measure beliefs is via a probability measure P, at least up to a 1-1 transformation of P
- the attractive aspect of this approach is that it did not involve utilities or relative frequencies rather it was more based on the logical properties we would want such a measure to have
- such a theorem was proved by Cox but a flaw in the proof was discovered in 1999
- this was fixed in 2009 but the modification is not very appealing
- so a general open problem in this area is to find a development similar to

Cox's that is also simple and appealing

- see the text for more details and references

